
di�iculty in handling peak loads, scalability limitations, lack of integration with other
systems, complexity in the code base, significant risk of downtime during updates,
and risk of security breaches.

Moreover, the ObjectStar vendor had declared the platform would no longer be
supported, as it was reaching end of life. This meant that there would be no support
provided for the ObjectStar platform in the event of a software failure or bug.

Zensar’s brief:
Rebuild: Redesign or rewrite the application component from scratch while
preserving its scope and specifications.
Re-host: Redeploy the application component to Amazon Web Services
(AWS) cloud.

Beyond the brief:
We adopted a test-driven development model to avoid rework and a multi-agile
execution model to align with how the interfacing systems work. In addition,
we descoped non-used functionality to avoid redundant features and code and
delivered self-service capabilities.

Challenges
Ine�iciencies and uncertainty

The IT department was dealing with an aging workforce that was close to retirement,
scarcity of skills, tacit knowledge, lack of documentation, cost overheads with an
unrationalized portfolio, and the risk of business disruption involved in modernizing
ObjectStar applications. And to top it o�, there was a lack of clarity on vendor support
from ObjectStar after 2020.

Solution
Test-driven development strategy

Approach
We had a unique situation where we did not have a business SPOC who could provide
end-to-end requirements. So, we took this solution approach:

Case Study

Multinational Insurance
Leader Transitions
From Uncertainty to
Being Future-ready

Overview
Modernizing a legacy app

A premium African insurance group, catering to customers in
14 countries across the continent, was using a medical fee application to

maintain details pertaining to medical practitioners,
manage tari� and test codes,
capture and validate tests manually,
upload tests in bulk using batch jobs,
make payments to doctors and pathologists,
generate correspondence of payments made to practitioners, and
produce accounting and management information system (MIS) reports.

As the system was built on ObjectStar, a legacy technology stack, the company was
facing a whole host of challenges: high maintenance cost, lost-opportunity cost,
compliance and maintenance issues, insu�icient organizational agility and e�iciency,

Reverse engineering by performing technical analysis of the existing application
and validation of the same from user groups during 8-10 discovery workshops
Division of the application into two parts: online application and back-end processing
Creation of an AWS-native architecture, leveraging AWS best practices
Thorough testing strategy involving 800+ test cases and data migration
Deployment strategy covering technical and production go-live to minimize impact
Involvement of business users at every sprint to get feedback during the early stages

Execution

Step 1: Requirement analysis
We conducted an application discovery workshop to identify the challenges and
risks associated with the legacy application process. The discovery involved a
thorough review of the existing system’s codebase, architecture, and data storage.
Based on the outcomes of the discovery, we developed a solution plan, using a
modernization approach.

Step 2: Design and development
Leveraging modern technologies and practices, we designed an AWS system
architecture that’s scalable, flexible, and easy to maintain. We then developed a
cloud-native application, factoring in secure login, online screens, batch jobs, API
integrations, and business logic. Finally, we enabled integration with external systems
and seamless data exchange between the new and old medical fee systems.

Step 3: Deployment, data migration, and testing
We deployed the new system code on three di�erent environments on the cloud,
before migrating the legacy system’s data to the cloud. As the legacy system had a
large amount of data and limited support from the cloud service provider, we used
open-source tools and techniques to ensure the data was migrated accurately.

Next, we conducted business user testing to ensure that it met all the requirements.
We also conducted systems integration testing, performance testing, security testing,
and disaster recovery testing to ensure the system could handle increased loads
during peak times.

Step 4: Phase-wise go-live
Phase 1: Authorization and authentication by a secure server
Phase 2: Technical release
Phase 3: Product release

di�iculty in handling peak loads, scalability limitations, lack of integration with other
systems, complexity in the code base, significant risk of downtime during updates,
and risk of security breaches.

Moreover, the ObjectStar vendor had declared the platform would no longer be
supported, as it was reaching end of life. This meant that there would be no support
provided for the ObjectStar platform in the event of a software failure or bug.

Zensar’s brief:
Rebuild: Redesign or rewrite the application component from scratch while
preserving its scope and specifications.
Re-host: Redeploy the application component to Amazon Web Services
(AWS) cloud.

Beyond the brief:
We adopted a test-driven development model to avoid rework and a multi-agile
execution model to align with how the interfacing systems work. In addition,
we descoped non-used functionality to avoid redundant features and code and
delivered self-service capabilities.

Challenges
Ine�iciencies and uncertainty

The IT department was dealing with an aging workforce that was close to retirement,
scarcity of skills, tacit knowledge, lack of documentation, cost overheads with an
unrationalized portfolio, and the risk of business disruption involved in modernizing
ObjectStar applications. And to top it o�, there was a lack of clarity on vendor support
from ObjectStar after 2020.

Solution
Test-driven development strategy

Approach
We had a unique situation where we did not have a business SPOC who could provide
end-to-end requirements. So, we took this solution approach:

Overview
Modernizing a legacy app

A premium African insurance group, catering to customers in
14 countries across the continent, was using a medical fee application to

maintain details pertaining to medical practitioners,
manage tari� and test codes,
capture and validate tests manually,
upload tests in bulk using batch jobs,
make payments to doctors and pathologists,
generate correspondence of payments made to practitioners, and
produce accounting and management information system (MIS) reports.

As the system was built on ObjectStar, a legacy technology stack, the company was
facing a whole host of challenges: high maintenance cost, lost-opportunity cost,
compliance and maintenance issues, insu�icient organizational agility and e�iciency,

© Zensar Technologies, 2024 | Page # 2

Reverse engineering by performing technical analysis of the existing application
and validation of the same from user groups during 8-10 discovery workshops
Division of the application into two parts: online application and back-end processing
Creation of an AWS-native architecture, leveraging AWS best practices
Thorough testing strategy involving 800+ test cases and data migration
Deployment strategy covering technical and production go-live to minimize impact
Involvement of business users at every sprint to get feedback during the early stages

Execution

Step 1: Requirement analysis
We conducted an application discovery workshop to identify the challenges and
risks associated with the legacy application process. The discovery involved a
thorough review of the existing system’s codebase, architecture, and data storage.
Based on the outcomes of the discovery, we developed a solution plan, using a
modernization approach.

Step 2: Design and development
Leveraging modern technologies and practices, we designed an AWS system
architecture that’s scalable, flexible, and easy to maintain. We then developed a
cloud-native application, factoring in secure login, online screens, batch jobs, API
integrations, and business logic. Finally, we enabled integration with external systems
and seamless data exchange between the new and old medical fee systems.

Step 3: Deployment, data migration, and testing
We deployed the new system code on three di�erent environments on the cloud,
before migrating the legacy system’s data to the cloud. As the legacy system had a
large amount of data and limited support from the cloud service provider, we used
open-source tools and techniques to ensure the data was migrated accurately.

Next, we conducted business user testing to ensure that it met all the requirements.
We also conducted systems integration testing, performance testing, security testing,
and disaster recovery testing to ensure the system could handle increased loads
during peak times.

Step 4: Phase-wise go-live
Phase 1: Authorization and authentication by a secure server
Phase 2: Technical release
Phase 3: Product release

di�iculty in handling peak loads, scalability limitations, lack of integration with other
systems, complexity in the code base, significant risk of downtime during updates,
and risk of security breaches.

Moreover, the ObjectStar vendor had declared the platform would no longer be
supported, as it was reaching end of life. This meant that there would be no support
provided for the ObjectStar platform in the event of a software failure or bug.

Zensar’s brief:
Rebuild: Redesign or rewrite the application component from scratch while
preserving its scope and specifications.
Re-host: Redeploy the application component to Amazon Web Services
(AWS) cloud.

Beyond the brief:
We adopted a test-driven development model to avoid rework and a multi-agile
execution model to align with how the interfacing systems work. In addition,
we descoped non-used functionality to avoid redundant features and code and
delivered self-service capabilities.

Challenges
Ine�iciencies and uncertainty

The IT department was dealing with an aging workforce that was close to retirement,
scarcity of skills, tacit knowledge, lack of documentation, cost overheads with an
unrationalized portfolio, and the risk of business disruption involved in modernizing
ObjectStar applications. And to top it o�, there was a lack of clarity on vendor support
from ObjectStar after 2020.

Solution
Test-driven development strategy

Approach
We had a unique situation where we did not have a business SPOC who could provide
end-to-end requirements. So, we took this solution approach:

Overview
Modernizing a legacy app

A premium African insurance group, catering to customers in
14 countries across the continent, was using a medical fee application to

maintain details pertaining to medical practitioners,
manage tari� and test codes,
capture and validate tests manually,
upload tests in bulk using batch jobs,
make payments to doctors and pathologists,
generate correspondence of payments made to practitioners, and
produce accounting and management information system (MIS) reports.

As the system was built on ObjectStar, a legacy technology stack, the company was
facing a whole host of challenges: high maintenance cost, lost-opportunity cost,
compliance and maintenance issues, insu�icient organizational agility and e�iciency,

Reverse engineering by performing technical analysis of the existing application
and validation of the same from user groups during 8-10 discovery workshops
Division of the application into two parts: online application and back-end processing
Creation of an AWS-native architecture, leveraging AWS best practices
Thorough testing strategy involving 800+ test cases and data migration
Deployment strategy covering technical and production go-live to minimize impact
Involvement of business users at every sprint to get feedback during the early stages

Execution

Step 1: Requirement analysis
We conducted an application discovery workshop to identify the challenges and
risks associated with the legacy application process. The discovery involved a
thorough review of the existing system’s codebase, architecture, and data storage.
Based on the outcomes of the discovery, we developed a solution plan, using a
modernization approach.

Step 2: Design and development
Leveraging modern technologies and practices, we designed an AWS system
architecture that’s scalable, flexible, and easy to maintain. We then developed a
cloud-native application, factoring in secure login, online screens, batch jobs, API
integrations, and business logic. Finally, we enabled integration with external systems
and seamless data exchange between the new and old medical fee systems.

Step 3: Deployment, data migration, and testing
We deployed the new system code on three di�erent environments on the cloud,
before migrating the legacy system’s data to the cloud. As the legacy system had a
large amount of data and limited support from the cloud service provider, we used
open-source tools and techniques to ensure the data was migrated accurately.

Next, we conducted business user testing to ensure that it met all the requirements.
We also conducted systems integration testing, performance testing, security testing,
and disaster recovery testing to ensure the system could handle increased loads
during peak times.

Step 4: Phase-wise go-live
Phase 1: Authorization and authentication by a secure server
Phase 2: Technical release
Phase 3: Product release

© Zensar Technologies, 2024 | Page # 3

Solution enablers

PING/active directory (AD) was used for configuring, authenticating,
and providing authentication details of the logged-in user.
Amazon API Gateway was used for all REST (JSON) endpoints
directly accessible to web, mobile, and other channels.
Amazon Elastic Load Balancing (ELB) was used to automatically
distribute incoming application tra�ic across multiple targets and
virtual appliances in one or more availability zones (AZs).
Angular 13.x and Node 16.x was used to develop a
single-page application.
Java 11, Spring boot 2.x, Microservices, Amazon Elastic
Container Service (ECS), and Spring Batch was used for all new
services to be developed for any channel or for migrating existing
services — where services can be containerized and the containers
can be managed through ECS.
Amazon Elastic Compute Cloud (EC2) was used to provide
secure, resizable compute capacity in the cloud and make
web-scale cloud computing easier for developers.
Amazon Relational Database Service (RDS) – PostgreSQL
(transactions database) was used to act like a write cache and hold
the transactions from the digital platform, before sending to the
respective business systems.
Amazon CloudTrail was used to provide visibility into user
activities by recording actions taken on your account.
Amazon Batch was used to enable developers and engineers to
run hundreds of thousands of batch computing jobs on AWS easily
and e�iciently.
Amazon CloudWatch was used to monitor the complete stack
(applications, infrastructure, network, and services) and use alarms,
logs, and events data to take automated actions and reduce mean
time to resolution (MTTR).

© Zensar Technologies, 2024 | Page # 4

At Zensar, we’re ‘experience-led everything.’ We are committed to conceptualizing, designing, engineering, marketing,
and managing digital solutions and experiences for over 145 leading enterprises. Using our 3Es of experience,
engineering, and engagement, we harness the power of technology, creativity, and insight to deliver impact.

Part of the $4.8 billion RPG Group, we are headquartered in Pune, India. Our 10,000+ employees work across 30+
locations worldwide, including Milpitas, Seattle, Princeton, Cape Town, London, Zurich, Singapore, and Mexico City.

For more information, please contact: info@zensar.com | www.zensar.com

Impact
A future-ready IT ecosystem

40 percent reduction in CAPEX
20 percent improvement in batch runs
37 percent lower operational costs

Business outcomes:
The legacy-modernization solution enabled greater user experience, scalability,
operational e�iciency, and cost -e�ectiveness. All of this resulted in heightened
productivity and future-readiness.

